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1 Introduction

The Hulthén Hamiltonian

H = −1

2
∇ − Z

�

e�r − 1
(1)

is exactly solvable with normalized ground-state wave function

φ0(r) = N0
1

�r

[
e−(Z−�/2)r − e−(Z+�/2)r

]

N0 =
[

Z(4Z2 − �2)

4π

]1/2

(2)

and corresponding energy

E0(�) = − Z2

2

(
1 − �

2Z

)2

(3)
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where � ≤ 2Z is a freely chosen screening parameter. For many years it has been
used as a model for treating a variety of phenomena in nuclear [1,2] and Condensed
matter physics [3–5]. In these applications one frequently requires various moment
integrals, frequently of the density n(r) = φ0(r)2

M(s, ν) =
∞∫

0

rs−1φ0(r)νdr. (4)

The aim of this note is to present the exact evaluation of the class M(m + ν, ν) where
m is a non-negative integer and ν > 0.

2 Evaluation

We begin by scaling one of the exponents out of the integrals through the substitution
x = (Z +�/2)r and introducing the parameter a = (Z −�/2)/(Z +�/2) to obtain

M(s, ν) = N ν
0

�ν(Z + �/2)s
I (s, ν, a)

I (s, ν, a) =
∞∫

0

xs−ν−1e−aνx (1 − e−(1−a)x )νdx (5)

where the leading exponential has been factored out of the parenthesis. We next apply
the binomial theorem to obtain

I (s, ν, a) =
∞∑

k=0

(−1)k
(

ν

k

) ∞∫

0

xs−ν−1e−[aν+(1−a)k]x dx (6)

The integral in (6) is Gauss’ Gamma function integral and the binomial coefficient
can be expressed in terms of Polchammer’s factorial symbol

(
ν

k

)
= (−1)k

k! (−ν)k

to yield

I (s, ν, a) = �(s − ν)

(1 − a)s−ν

∞∑
k=0

(−ν)k

k!
1

(k + b)s−ν
(7)

where b = aν/(1 − a). There are several cases in which the series in (7) can be
expressed in closed form.
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2.1 Case 1: s = m + ν

Here, when m = 1, 2, 3, ,̇ we have

I (m + ν, ν, a) = (m − 1)!
(1 − a)m

∞∑
k=0

(−ν)k

k!
[

�(k + b)

�(k + b + 1)

]m

(8)

and since the ratio of Gamma functions is (b)k/b(b + 1)k , we have, by definition,

I (m + ν, ν, a) = (m − 1)!
(aν)m m+1 Fm(−ν, b, . . . , b; b + 1, . . . , b + 1; 1) (9)

in terms of the generalized hypergeometric function [6]. For the case of unit argument,
as here, this hypergeometric function can be summed by the formula

p+1 Fp(α, β1, . . . , βp;β1 + 1, . . . , βp + 1; z) =
p∑

k=1

2 F1(α, βk;βk + 1; z)

p∏
l=1

βl

βl − βk
(10)

where the factor with l = k is omitted from the product. Now, 2 F1(α, β;β + 1; 1) =
�(1 − a)�(β + 1)/�(β − α + 1) and the case where the beta’s become equal can be
handled by L’Hospital’s rule. Without much difficulty, we find

I (m + ν, ν, a) = (−1)m−1

(1 − a)m
�(ν + 1)

dm−1

dxm−1

�(x)

�(x + ν + 1)
|x=b. (11)

2.2 Case 2: m = 0

Here we deal with the integral

I (ν, ν, a) =
∞∫

0

dx

x
e−aνx (1 − e−(1−a)x )ν. (12)

First we note the Laplace transform [7]

∞∫

0

dte−pt (1 − e−(1−a)t )ν =
�

(
p

1−a

)
�(ν + 1)

(1 − a)�
(

p
1−a + ν + 1

) (13)
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and the inverse Laplace transform [7]

c+i∞∫

c−i∞

dt

2π i t
e(p−aν)t = θ(p − aν). (14)

Then, by the Parseval relation for the Laplace transform

I (ν, ν, a) = �(ν + 1)

1 − a

∞∫

aν

�
(

p
a−1

)

�
(

p
a−1 + ν + 1

)dp

= �(ν + 1)

∞∫

b

�(x)

�(x + ν + 1)
dx (15)

In general one can get no further analytically; however, when ν is a positive integer

I (n, n, a) = n!
∞∫

b

dx

x(x + 1) . . . (x + n)

=
n∑

k=0

(−1)k+1
(

n
k

)
ln

(
na

1 − a
+ k

)
(16)

by partial fractions.
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